An Efficient and Effective Tool for Image Segmentation, Total Variations and Regularization

نویسنده

  • Dorit S. Hochbaum
چکیده

One of the classical optimization models for image segmentation is the well known Markov Random Fields (MRF) model. MRF formulates many total variation and other optimization criteria used in image segmentation. In spite of the presence of MRF in the literature, the dominant perception has been that the model is not effective for image segmentation. We show here that the reason for the non-effectiveness is not due to the power of the model. Rather it is due to the lack of access to the optimal solution. Instead of solving optimally, heuristics have been engaged. Those heuristic methods cannot guarantee the quality of the solution nor the running time of the algorithm. We describe here an implementation of a very efficient polynomial time algorithm, which is provably fastest possible, delivering the optimal solution to the MRF problem, Hochbaum (2001). It is demonstrated here that many continuous models, common in image segmentation, have a discrete analogs to various special cases of MRF. As such they are solved optimally and efficiently, rather than with the use of continuous techniques such as PDE methods that can only guarantee convergence to a local minimum. The MRF algorithm is enhanced here demonstrating that the set of labels can be any discrete set. Other enhancements include dynamic features that permit adjustments to the input parameters and solves optimally for these changes with minimal computation time. Modifications in the set of labels (colors), for instance, are executed instantaneously. Several theoretical results on the properties of the algorithm are proved here and are demonstrated for examples in the context of medical and biological imaging.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Splitting Algorithm Based on Multi-target Model for Image Segmentation

Against to the different regions of membership functions indicated image in the traditional image segmentation variational model, resulting segmentation is not clear, de-noising effect is not obvious problems, this paper proposes multi-target model for image segmentation and the splitting algorithm. The model uses a sparse regularization method to maintain the boundaries of segmented regions, t...

متن کامل

Cluster-Based Image Segmentation Using Fuzzy Markov Random Field

Image segmentation is an important task in image processing and computer vision which attract many researchers attention. There are a couple of information sets pixels in an image: statistical and structural information which refer to the feature value of pixel data and local correlation of pixel data, respectively. Markov random field (MRF) is a tool for modeling statistical and structural inf...

متن کامل

Quantitative Comparison of SPM, FSL, and Brainsuite for Brain MR Image Segmentation

Background: Accurate brain tissue segmentation from magnetic resonance (MR) images is an important step in analysis of cerebral images. There are software packages which are used for brain segmentation. These packages usually contain a set of skull stripping, intensity non-uniformity (bias) correction and segmentation routines. Thus, assessment of the quality of the segmented gray matter (GM), ...

متن کامل

Multi-Label Markov Random Fields as an Efficient and Effective Tool for Image Segmentation, Total Variations and Regularization

One of the classical optimization models for image segmentation is the well known Markov Random Fields (MRF) model. This model is a discrete optimization problem, which is shown here to formulate many continuous models used in image segmentation. In spite of the presence of MRF in the literature, the dominant perception has been that the model is not effective for image segmentation. We show he...

متن کامل

Image Segmentation with a Sobolev Gradient Method

The most effective methods for finding object boundaries in a digital image involve minimizing a functional over a set of curves or surfaces, where the functional includes internal energy terms for regularization and external energy terms that allign the curves or surfaces with object boundaries. Current practice is to seek critical points of the energy functional by what amounts to a steepest ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011